

Document Version 1.2

Multi-Signature Mechanism 3
Delegation 3
Public and Private Accounts 3
Quorum Concept 4
Rejecting Privileges 5

Scenarios 5
Scenario 1: Using a Private Account with Multisignature 5

Step 1: Creating a New Account 5
Step 2: Delegating Privileges 5
Step 3: Downgrading Personal Privilege Level 5

Scenario 2: Using Two Private Accounts with Multisignature 6
Step 1: Creating New Accounts 6
Step 2: Delegating Privileges 6
Step 3: Downgrading Personal Privilege Level 6

Scenario 3: Making a Private Account Public 6
Step 1: Creating New Accounts 6
Step 2: Delegating Privileges 6
Step 3: Downgrading Personal Privilege Level 7
Step 4: Making an Account Public 7

Scenario 4: Using Quorum with the Private Account 7
Step 1: Creating New Accounts 7
Step 2: Delegating Privileges 7
Step 3: Downgrading Personal Privilege Level 7

Multi-Signature Mechanism
To protect personal account information, EON employs the Multisignature mechanism or MSM.
MSM allows you to distribute privileges to sign uncommitted transactions among multiple
participants considering the quorum that covers certain percentage that should be attained in
order for a transaction to be signed.

Delegation
The main idea behind MSM technology is Delegation. Delegation is a way to delegate a portion
of privileges to another account(s) to sign uncommitted transactions.

All new transactions should be signed (i.e. confirmed) by the required number of participants
(not just by issuer) to whom privileges have been delegated considering the percent threshold.
A threshold is defined by Quorum. By default, the quorum threshold is set to 100%. You may
customize the quorum in a way that the overall threshold might be lower. At the same time the
quorum shouldn’t exceed 100%. See ​Quorum Concept​ section.

Let’s say there are three accounts A, B, and C. Account A wants to secure its deposit and
decided to delegate 50% of its digital signature to account B, and another 50% to account C. At
the same time account A should downgrade its own privileges down to 75%. All three of them
are now have 175% of the digital signature in total. Now, when account A issues a transaction, it
needs either account B or account C to sign this transaction. Though accounts B and C are now
delegates of the account A, they still remain self-sufficient in signing their own transactions and
do not require any kind of participation of the account A whatsoever. However, there might be
scenarios when account A gives privileges to account B, and account B gives privileges to
account A. In this case both accounts need each other when either of them issues a new
transaction. See ​Scenarios​ section.

A proper sequence should be adhered when delegating privileges. First step is to delegate
privileges and the second step is to downgrade the privilege of the account that gives privileges.

Delegated privileges may be rejected by that account you want to become your delegate. See
Rejecting Privileges​ section.

Public and Private Accounts
Sometimes you may want to make your account public. All public accounts share their seed
among other participants over the entire EON network. The main idea behind a public account
is to distribute privileges among those accounts you trust the most. When you make your
account public, you have no privileges whatsoever to sign up transactions even that of your

own. As soon as all required delegates confirm a new transaction, a transaction considered
committed and therefore added to the block.

To make an account public, you first need to delegate privileges to sign your transactions to
another account(s), then you have to downgrade your own privilege level to 0 and wait for 24
hours. After the 24 hours delay, you have to execute the ​./eon publication​ command. But
before you do this, you must ensure that your account is not a delegate of someone else.
Delegates cannot be public.

Once your account had become public, your seed becomes known and might be used by your
delegates to issue transactions on behalf of your account. At the same time, anyone over the
network may use your seed but as long as those accounts aren’t your delegates, they do not
have privileges to sign up such transactions, therefore these transactions will always remain
uncommitted. Though such a transaction will never be added into the block, the public key might
be considered compromised.

Quorum Concept
Quorum lets you configure your MSM mode in a more granular way. With Quorum you can set
the required threshold that should be attained when issued transactions are being signed up by
multiple participants. Quorum also allows you to define transaction types to which the defined
percent range is applied. By default, the quorum is set to 100 percents.

There are following transaction types available:

Type Code Description

Registration 100 Registration of a new account

Payment 200 A coin transfer between two accounts

Deposit 300 Deposit funds to participate in the generation of blocks

Delegate 400 Sets the weight of the voice for the signature

Quorum 410 Sets the quorum for transactions

Rejection 420 Refusal to participate in transaction confirmation

Publication 430 Makes an account public

ColoredCoinRegistration 500 Colored coins creation

ColoredCoinPayment 510 Colored coins transfer

ColoredCoinSupply 520 Change in the colored coin emission

ComplexPayment 600 Complex payment (complex transaction is a transaction
which includes several standard payment transactions)

The Quorum command suggests the following syntax:

>>> ​./eon quorum -all 50​ - Sets the overall quorum that should be attained to 50
percents.

>>> ​./eon quorum -all 50 -100 95​ - Sets the overall quorum that should be attained
to 50 percents and the special quorum of 95 for transactions of the Registration type. The ratio
part in this example (-100 95) is not mandatory and can be omitted. Bear in mind, that the ratio
percent threshold must be different from that of the overall threshold. (e.g. ​./eon quorum -all
50 -100 50 ​is not correct​).

Rejecting Privileges
A private account which you want to become a delegate can reject delegated privileges.

Scenarios

Scenario 1: Using a Private Account with Multisignature
This scenario demonstrates how you can protect your account (i.e. private seed) that is linked to
a peer.

Step 1: Creating a New Account
>>>​ ./eon seed
>>>​ ./eon register -p <public key>

Step 2: Delegating Privileges
>>> ​./eon delegate -r ​EON_ID_1​ -p 50 - Delegating 50% of privileges to

a newly created account.

Step 3: Downgrading Personal Privilege Level
>>> ​./eon delegate -r ​MY_OWN_EON_ID​ -p 50 - Downgrading your own

privilege level down to 50%.

Now that you have delegated privileges to the EON_ID_1 account, you’d need its confirmation
when issuing new transactions. For example, a payment transaction:

>>> ​./eon payment -r <EON_ID> -a 10

Scenario 2: Using Two Private Accounts with Multisignature
This scenario is similar to the ​Scenario 1: Using a Private Account with Multisignature​, except
that it involves two private accounts that share 50% of privileges. This scenario suggests that if
either of the accounts is lost, a transaction still can be confirmed.

Step 1: Creating New Accounts
>>>​ ./eon seed
>>>​ ./eon register -p <public key>

Step 2: Delegating Privileges
>>> ​./eon delegate -r ​EON_ID_1​ -p 50 - Delegating 50% of privileges to

a newly created account.

>>> ​./eon delegate -r ​EON_ID_2​ -p 50 - Delegating 50% of privileges to
a newly created account.

Step 3: Downgrading Personal Privilege Level
>>> ​./eon delegate -r ​MY_OWN_EON_ID​ -p 50 - Downgrading your own

privilege level down to 50%.

Scenario 3: Making a Private Account Public
This scenario is quite similar to the ​Scenario 2: Using Two Private Accounts with Multisignature
one but here we use a public account approach. When using public accounts, a seed cannot be
lost because it becomes known to anyone over the entire network.

Step 1: Creating New Accounts
>>>​ ./eon seed
>>>​ ./eon register -p <public key>

Step 2: Delegating Privileges
>>> ​./eon delegate -r ​EON_ID_1​ -p 100 - Delegating 100% of privileges

to a newly created account.

>>> ​./eon delegate -r ​EON_ID_2​ -p 100 - Delegating 100% of privileges
to a newly created account.

Step 3: Downgrading Personal Privilege Level
>>> ​./eon delegate -r ​MY_OWN_EON_ID​ -p 0 - Downgrading your own

privilege level down to 0%.

Step 4: Making an Account Public
After the 24 hours delay

>>>​ ./eon publication

If for some reasons either of the accounts is lost, a transaction still can be confirmed by another
one because both have been given 100% of privileges.

Scenario 4: Using Quorum with the Private Account
Let’s say we want to make some payments and secure our deposit. Here we’re setting up the
quorum in a way that all payment transactions require 50% threshold.

Step 1: Creating New Accounts
>>>​ ./eon seed
>>>​ ./eon register -p <public key>

Step 2: Delegating Privileges
>>> ​./eon delegate -r ​EON_ID_1​ -p 100 - Delegating 100% of privileges

to a newly created account.

>>> ​./eon delegate -r ​EON_ID_2​ -p 100 - Delegating 100% of privileges
to a newly created account.

>>> ./eon quorum -all 100 -200 50 - Setting up a common quorum to 100%

while for Payment transactions we define 50% threshold.

Step 3: Downgrading Personal Privilege Level
>>> ​./eon delegate -r ​MY_OWN_EON_ID​ -p 50 - Downgrading your own

privilege level down to 50%.

In this scenario you can make a payment solely by yourself when transferring from the common
account. But to make a payment from a deposit account, you need both accounts to confirm
your transaction.

